Preparation and formation mechanism of Al-YNU-1 using highly acid-treated Fe-YNU-1 molecular sieve as a silica source
نویسندگان
چکیده
منابع مشابه
YNU-HEPTh-06-103 KUNS-2017
The investigation of the photon structure has been an active field of research both theoretically and experimentally [1,2,3,4]. Also there has been growing interest in the study of the spin structure of photon. In particular, the first moment of the polarized photon structure function g 1 has attracted attention in connection with its relevance to the QED and QCD axial anomaly [5,6,7,8,9]. The ...
متن کاملYNU-HPCC at IJCNLP-2017 Task 1: Chinese Grammatical Error Diagnosis Using a Bi-directional LSTM-CRF Model
Building a system to detect Chinese grammatical errors is a challenge for naturallanguage processing researchers. As Chinese learners are increasing, developing such a system can help them study Chinese more easily. This paper introduces a bidirectional long short-term memory (BiLSTM) conditional random field (CRF) model to produce the sequences that indicate an error type for every position of...
متن کاملPREPARATION AND MOLECULAR STRUCTURE OF 2-BENZYLAMINOPYRIDINE COPPER(1) COMPLEX
2-Benzylaminopyridine (HBAP) reacts with NaH in THF and generates the sodium salt (NaBAP). Further reaction of [Cu(TMEDA) ] [CuCl ] with one equivalent of this ligand in THF leads to the formation of a dimeric Cu(1) complex, [Cu (BAP)] . H 0. The molecular structure has been determined by using a single-crystal X-ray diffraction method. The yellow compound crystallizes in the monoclinic s...
متن کاملpreparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis
کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.
YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2013
ISSN: 1872-2067
DOI: 10.1016/s1872-2067(11)60510-x